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abstract: Facultative investment in offspring sex is related to ma-
ternal condition in many organisms. In mammals, empirical support
for condition-dependent sex allocation is equivocal, and there is some
doubt as to theoretical expectations. Much theory has been developed
to make predictions for condition-dependent sex ratios in popula-
tions with discrete generations. However, the extension of these pre-
dictions to populations with overlapping generations (OLGs; e.g.,
mammals) has been limited, leaving doubt as to the specific predic-
tion for maternal-condition-dependent sex ratios in mammals. We
develop a population genetics model that incorporates maternal ef-
fects on multiple offspring fitness components in a population with
OLGs. Using a rare-gene and evolutionarily stable strategy approach,
we demonstrate that sex ratio predictions of this model are identical
to those for equivalent discrete generations models. We show that
the predicted sex ratios depend on the sex-specific ratio of Ro (off-
spring lifetime fitness) for offspring of good and poor mothers. This
offspring lifetime fitness rule indicates that empirical research on
conditional sex ratios should consider all three components of off-
spring Ro (juvenile survival, adult life span, and fertility).

Keywords: Trivers-Willard model, Charnov-Bull model, mammal sex
ratios, overlapping generations, population genetics model.

Trivers and Willard (1973) first proposed that a mother
may allocate to offspring of different sexes according to
her condition. They suggested that in a polygynous mating
system, reproductive success is highly skewed in males
compared with females—only the few best males secure
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reproductive opportunities. In such a system, a mother
that is going to bear reproductively competitive offspring
should have sons, assuming that she can alter sex ratio
without compromising other fitness components (e.g., lit-
ter size). The model assumes that maternal condition af-
fects offspring condition, that offspring condition is main-
tained until adulthood, and that offspring condition has
a greater effect on a son’s reproductive success than on
that of a daughter. Reproductive competitive ability is the
measure of offspring fitness in the Trivers-Willard (T-W)
hypothesis.

Stimulated by the T-W ideas, Charnov and Bull (1977)
extended the principle (condition-dependent male/female
fitness effects should select for facultative sex ratios) to a
wide variety of contexts (overviews in Charnov 1982,
1993). It was also soon realized that Ghiselin’s (1969) size-
advantage hypothesis for sex reversal made very similar
male/female fitness assumptions. There is now a large lit-
erature on condition-dependent sex ratios in diverse or-
ganisms (see, e.g., de Jong and Klinkhamer 2005 for
plants).

Although the T-W hypothesis was developed with un-
gulate mammals in mind, subsequent application of the
model to mammals has led to inconsistent results (e.g.,
Hewison and Gaillard 1999; Cockburn et al. 2002; Sheldon
and West 2004). While compelling examples of condition-
dependent biases in offspring sex exist in mammals (e.g.,
Clutton-Brock et al. 1986; Cameron et al. 1999; Fisher
1999), support for the T-W hypothesis is often unclear in
specific studies or when considering the results of such
studies in aggregate. In some species, sex ratio biases are
related to maternal condition, but the assumptions of the
T-W hypothesis have not been tested (Hewison and Gail-
lard 1999). In other species, the assumptions of the model
appear to be met, but no conditional sex ratio biases are
observed (Krackow 1997; Bercovitch et al. 2000; Blanchard
et al. 2005). Recent reviews of sex ratios in mammals (and
birds) have substantially advanced our understanding of
the diverse empirical results by highlighting the potential
constraints on sex ratio adjustment, the interaction of mul-
tiple selective agents, and the proper measures of maternal
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Figure 1: Maternal condition effects on offspring fitness. A, Juvenile
survival of male (triangles) and female (circles) offspring from poor and
good mothers. B, Offspring fitness standardized to 1 for offspring born
in poor condition. Sons gain a greater advantage than daughters by being
born to a mother in good condition.

condition (Cockburn et al. 2002; West and Sheldon 2002;
Cameron 2004; Sheldon and West 2004; West et al. 2005).
Many inconsistencies in studies of the T-W hypothesis may
be attributed to a mismatch between theory and empiri-
cism. That is, potentially, predictions are not met because
of insufficient knowledge of the biology of the organisms
(e.g., offspring fitness components) and how it relates to
theoretical foundations. Alternatively, it may be because
models do not explicitly take into account the complicated
life histories of long-lived animals with overlapping gen-
erations (OLGs; Frank 1990; Pen and Weissing 2002).

Previous theoretical work on condition-dependent sex
ratios has applied game theory (evolutionarily stable strat-
egies) to population genetic models to demonstrate that
(i) individuals in good condition should allocate more to
the sex whose fitness increases more steeply with condition
and (ii) optimal sex allocation depends on the frequency
distribution of conditions in the population (Charnov et
al. 1978, 1981; Charnov 1979; Bull 1981; Leimar 1996).
Additionally, previous models have had great predictive
success in a number of empirical studies of nonmam-
malian taxa (e.g., Charnov et al. 1978, 1981). The appli-
cation of these models to mammals, however, has been
complicated by the fact that most condition-dependent
sex ratio models do not include OLGs or many other
demographic features of mammals (Frank 1990; for OLG
models, see Charnov and Dawson 1989; Leimar 1996; Pen
et al. 1999; Pen and Weissing 2002).

There are several reasons why studying sex allocation
in an OLG framework can provide insight into condition-
dependent sex ratios in mammals. First, it has been shown
that sex ratio predictions can depend on OLGs, for ex-
ample, in seasonal populations and in response to pop-
ulation perturbation (Werren and Charnov 1978; West and
Godfray 1997). Second, with OLGs, offspring compete for
reproductive opportunities with multiple cohorts, which
may influence how reproductive competitiveness is mea-
sured. Finally, unlike discrete generations models, models
using OLGs can reveal how different components of fitness
in a long-lived organism influence the optimal sex ratio
(e.g., how important are age of first reproduction and adult
life span?).

In this article, we develop a model of optimal sex ratios
as a function of maternal condition in a population with
OLGs. The main objective of this exercise is to examine
whether sex ratio predictions from discrete generations
models generalize to OLGs. In addition, we examine how
fitness components of long-lived offspring interact to
shape optimal sex ratios and what this tells us about how
to measure offspring fitness in empirical research on long-
lived organisms.

Maternal Condition and Sex Allocation in a
Population with Discrete Generations

We first consider a model of conditional sex ratios in a
population with discrete generations for comparison with
an OLG model. We use a rare-gene model to find the
optimal proportion of offspring that are sons for poor (r1)
and good (r2) mothers. A proportion, h, of females are in
poor condition, and are in good condition. Clutch1 � h
size is b, and the mothers in good condition provide a
survival advantage to both sexes of their offspring, with
the advantage to sons being greater (fig. 1A). This creates
a gain asymmetry between sons and daughters, with sons
gaining more from good mothers than do daughters. The
first-year survival rates of sons and daughters produced
by mothers in poor condition are Sm and Sf, respectively.
The survival rates of sons and daughters produced by
mothers in good condition are Smbm and Sfbf, respectively.
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Figure 2: Optimal sex ratios (proportion of offspring that are sons) for
poor (r1) and good (r2) mothers in three regions of space. A,h/(1 � h)
Predictions from the discrete generations model. B, Predictions from the
overlapping generations model. The optimal sex ratio depends on the
within-sex ratio of offspring lifetime fitness (R0) from good and poor
mothers.

Table 1: Fitness components for the overlapping generations
model

Offspring sex and
birth condition

First-year
survival

Fertility or
fecundity

Annual adult
survival

Male:
Good Smbm Q pmgm

Poor Sm 1 pm

Female:
Good Sfbf bJ pfgf

Poor Sf b pf

Therefore, bm and bf represent the relative survival ad-
vantages (the ratio) of offspring born to mothers in good
condition compared with those born to mothers of poor
condition (here, ). Maternal condition has nob 1 b 1 1m f

influence on the condition in which their daughters re-
produce (this is again assigned at random as h and 1 �

).h
The model is presented in appendix A and is similar to

sex ratio models in other condition-dependent systems
(Charnov et al. 1978; Charnov 1979; Charnov and Dawson
1989). The final fitness equation (A1) and the sex ratio
solutions (fig. 2A; table A1, eqq. [A4a], [A4b]) feature the
survival advantages (bm and bf) but not the survival rates
themselves (Sm and Sf). It is the dimensionless ratios (bm

and bf) that determine fitness (fig. 1B).
The solutions reveal that both r1 and r2 cannot be op-

timized simultaneously as long as , and one orb ( bm f

both sex ratios must always be at a boundary (0 or 1; table

A1). The sex ratio functions (r p (1/2) � (1/2)[h/(1 �2

, ; table A1, eqq.h)](1/b ) r p (1/2) � (1/2)[(1 � h)/h]bf 1 m

[A4a], [A4b]) depend on the ratio of females in poor
condition to females in good condition ( ; fig. 2A),h/(1 � h)
with three separate regions. First, when females in poor
condition are rare, they produce only daughters, while
good females produce a male-biased sex ratio. Second,
when good females are rare, they produce only sons, while
poor females produce a sex ratio !0.5. Third, at inter-
mediate proportions, good females produce only sons,
while poor females produce only daughters. This pattern
in sex ratio biases is predicted as long as , and theb 1 bm f

cut points between the three regions are determined by
bm and bf.

Maternal Condition and Sex Allocation with OLGs

We extend these analyses of conditional sex allocation to
populations with OLGs to examine whether OLGs per se
alter the model predictions. As before, h proportion of
females are in poor condition and produce a sex ratio of
r1, whereas proportion of females are in good con-1 � h
dition and produce a sex ratio of r2. This random assign-
ment of breeding condition assumes that a female’s birth
condition does not affect the birth condition of her off-
spring. The age of first reproduction is 1 year, and clutch
size is b. In this model, we include additional effects of
maternal condition on offspring fitness components (table
1). The fecundity of a female is associated with her birth
condition and not her current reproductive condition.

To explore maternal effects on sex allocation in popu-
lations with OLGs, we develop a population genetics model
(app. B). We first consider the projection through time of
a background population (wild-type, aa), with population
dynamic equations for all females and males born under
poor and good conditions separately (eqq. [B1]). We then
introduce a rare, dominant mutant (Aa) into this back-
ground population and describe the population dynamics
of the same life-history states (eqq. [B3]). The population
dynamic equations provide a mutant fitness measure, l2

(the per-unit time increase of the mutant gene in a non-
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Table 2: Maternal condition and optimal sex ratios in a population with overlapping generations

Derivatives
Parameter space

regions r1 r2

I. ,
dl dl2 2

! 0 p 0ˆ ˆdr dr1 2
! bfJwf

h

1�h 0
(eq. [1a])

1 1 h 1
�2 2 (1�h) b Jwf f

II. ,
dl dl2 2

! 0 1 0ˆ ˆdr dr1 2
bfJwf ≤ ≤ bmQwm

h

1�h 0 1

III. ,
dl dl2 2p 0 1 0ˆ ˆdr dr1 2

bmQwm !
h

1�h (eq. [1b])
1 1 (1�h)

� b Qwm m2 2 h 1

Note: wm is the ratio of expected adult life span of a son born in good condition (Emg) to the expected adult life span of a son

born in poor condition (Emp), ; and . wf is the ratio of expected adult life span ofE /E E p 1/(1 � p g ) E p 1/(1 � p )mg mp mg m m mp m

a daughter born in good condition (Efg) to the expected adult life span of a daughter born in poor condition (Efp), ;E /Efg fp

and .E p 1/(1 � p g ) E p 1/(1 � p )fg f f fp f

growing background population), which is used to find
the optimal r1 and r2. As with the previous model, we find
that both r1 and r2 cannot simultaneously have internal
optima. The optimal sex ratios again depend on the ratio
of the proportion of females in poor condition to the
proportion of females in good condition, resulting in three
regions of (table 2; fig. 2B).h/(1 � h)

The solutions (table 2, eqq. [1a], [1b]) are essentially
unchanged from those for the rare-gene, discrete gener-
ations model (cf. table A1, eqq. [A4a], [A4b]). Both so-
lutions reflect the addition of new advantages to sons and
daughters born to mothers in good condition: bm and bf

are the familiar first-year survival advantages, Q and J are
the fertility and fecundity advantages, and wm and wf are
adult life span advantages determined by annual adult sur-
vival advantages (gm and gf). The predicted optimal sex
ratios depend on the product of these advantages in fitness
components (juvenile survival life spanadvantage # adult

advantage). That is, the cut pointsadvantage # fertility
for r1 and r2 (boundaries between regions I, II, and III)
are redefined to represent the lifetime fitness advantage of
being born to a mother in good condition (fig. 2B; ratio
of juvenile life span forsurvival # fecundity # adult
good to poor offspring). As long as the combined fitness
advantage to sons is greater than the advantage to daugh-
ters ( ), mothers in good condition will pro-b Qw 1 b Jwm m f f

duce male-biased sex ratios, and mothers in poor con-
dition will produce female-biased sex ratios. This model
demonstrates that the presence of OLGs has no effect on
sex allocation; it merely redefines how we measure fitness
(fig. 2B). Now fitness is lifetime fitness.

Additions to the Model: General Rules for OLGs

We made two modifications to the model to explore its
application to other biological situations (see app. B for
more details). First, we changed the age of first repro-
duction (AFR) to 2 years for both males and females. The
sex ratio predictions of a model with are iden-AFR p 2

tical to those for . In general, we can considerAFR p 1
an organism that reaches sexual maturity many years after
birth, where annual survival each year prior to sexual ma-
turity may differ between good and poor offspring. In this
case, the total immature survival advantage would simply
be the product of the yearly survival advantages (e.g.,
bf1bf2bf3). Notably, a conditional advantage seen solely in
first-year survival (bf1 or bm1) would still be measured in
the total juvenile survival advantage. This demonstrates
the following important result: for long-lived organisms
that have OLGs and that do not reproduce until many
years after birth, a sex-differential conditional advantage
in first-year survival alone is sufficient to predict biased
sex ratios (i.e., Q, wm, J, and ). In other words,w p 1f

maternal conditional effects need not be maintained until
adulthood for biased sex ratios to be adaptive.

Second, we examined the situation where females breed-
ing in good condition show an increase in fecundity com-
pared with females in poor condition. Females in good
condition were given a fecundity of bJ, where J is the
ratio of good female fecundity to poor female fecundity
( ). Breeding condition is still assigned at random.J 1 1
This fecundity advantage to females reproducing in good
condition does not affect the solutions. However, it does
increase the number of sons and daughters born in good
condition and redefines the region boundaries in a manner
equivalent to rescaling the axis by a factor ofh/(1 � h)
J�1.

Although we have not explored arbitrary AFR or age-
specific demography or fertility, the models lead us to
anticipate several generalities associated with sex ratios in
nongrowing populations with OLGs. Our models dem-
onstrate that the sex ratio solutions depend on advantages
in offspring lifetime fitness (within each sex). This lifetime
fitness rule is equivalent to using R0 as the fitness measure
(Charnov 1997) and should hold regardless of the partic-
ular model demography, as long as condition is assigned
randomly (fig. 2B; Leimar 1996). The direction of sex ratio
biases should always be predicted by the ratio of son versus
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daughter lifetime fitness advantages. In addition, condi-
tional effects that impact both sexes equally (e.g., increased
maternal fecundity) have little or no influence on the sex
ratio predictions.

Discussion and Conclusions

We have developed a model of optimal sex allocation when
maternal condition varies for populations with OLGs. It
takes into account a number of biological scenarios, and
its flexibility (e.g., altering various aspects of offspring fit-
ness and population demography) should be of great use
for future theoretical extensions. The life-history aspects
incorporated in our models include maternal effects on
all components of offspring lifetime fitness (R0), delayed
age of first reproduction, and condition-based fecundity
benefits. Our model has demonstrated that the presence
of OLGs per se has no effect on the sex ratio predictions.
Of course, this generalization must be accompanied by the
caveat that many social and reproductive characteristics
often thought to impact sex ratios operate only when gen-
erations overlap (e.g., daughters may remain near and in-
terfere with their mother’s future reproduction).

The model we have developed in this article also ad-
vances our views on how fitness effects in offspring shape
optimal sex ratios. Similar to other sex ratio models, we
found that the optimal sex ratios depend on the relative
within-sex advantages of maternal condition and that ab-
solute differences in offspring fitness between the sexes did
not matter (Charnov 1979). In addition, offspring juvenile
survival, adult life span, and fertility combine to redefine
offspring fitness as lifetime fitness or R0. When one off-
spring sex gains more in lifetime fitness from being born
to good-condition mothers (e.g., males: ),b Qw 1 b Jwm m f f

that sex will be overrepresented in the offspring of those
mothers. The importance of lifetime fitness has previously
been argued for maternal-condition-based sex ratios by
Leimar (1996). Here, we show that offspring lifetime fit-
ness is the product of three measurable fitness components
(juvenile life fertility;survival # adult span # annual
Charnov 1997).

This lifetime fitness rule indicates which aspects of off-
spring phenotype and life history should be emphasized
in empirical research on sex ratios. In the conceptual
model of Trivers and Willard (1973), maternal condition
affected the reproductive success of sons more than that
of daughters (assumption 3). This is captured in our model
by the fertility and fecundity variables (Q and J). This
emphasis on adult reproductive success (fertility and fe-
cundity) has led to much attention being placed on the
second T-W assumption that maternal effects are main-
tained until adulthood. Here, we’ve confirmed that neither
of these assumptions needs to be met in order for

condition-dependent sex ratios to be adaptive. Fertility
advantages represent only one of the three fitness com-
ponents in the lifetime fitness of each sex of offspring.
The other two are juvenile survival and adult life span. If
maternal condition influences only offspring survival from
weaning to sexual maturity, this is potentially sufficient to
lead to biased sex ratios. In addition, if any of the lifetime
fitness components combine to provide a sex-differential
advantage with condition, our model predicts condition-
dependent biased sex ratios.

Our model also illustrates how opposing advantages to
offspring fitness components might select for unbiased sex
ratios based on maternal condition. For example, sons may
gain more in fertility from maternal condition (i.e., T-W
hypothesis), but if daughters gain equally more in juvenile
survival, this could negate a benefit for biased sex ratios.
Therefore, empirical research on conditional sex ratios
(including T-W) should attempt to measure all three com-
ponents of lifetime fitness (juvenile survival, adult life
span, and fertility) rather than focusing on fertility alone
(for a similar argument, see Leimar 1996). This is difficult
in practice but is essential for an accurate prediction of
offspring sex ratios.

Finally, we do not wish to leave the impression that age-
structured life histories never show the potential to select
for facultative sex ratios due to age structure itself, only
that a maternal condition effect may not change with
OLGs. At least two age-structured facultative effects have
been studied. Short-lived organisms in seasonal environ-
ments with small overlap in generations (i.e., across-season
age structure) may have adaptive seasonal shifts in sex
ratio (Werren and Charnov 1978). These shifts are known
for several species (Seger 1983; Conover and Heins 1987)
and may occur in mammals (e.g., McShea and Madison
1986). As a second example, long life in mammals is often
correlated with a litter size of 1. If a male offspring imposes
a different mortality rate on the mother than a daughter
does, a shift in offspring sex is predicted with the mother’s
age such that the sex imposing the lower mortality should
be born to younger mothers (Charnov 1982, p. 96). This
is an age-structured prediction even for mothers of the
same quality because mothers showing the age shift will
increase their own life span. This effect seems not to be
consistently observed in mammals (Hewison et al. 2002).

We imagine some logical extensions of the model that
take into account further potential biological complica-
tions. Some of these extensions might help elucidate the
inconsistent sex ratios of mammals. First, adding an in-
teraction between maternal condition and a daughter’s
adult reproductive condition may alone create a relative
advantage for daughters (Leimar 1996), although it re-
mains unclear as to when this would overcome a son’s
relative advantage and lead to production of daughters by
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mothers in good condition. Second, we could include
small clutch size effects and sex-specific quality versus off-
spring size curves to examine whether a mother with ad-
equate resources should have one high-quality son or two
average daughters (Williams 1979). Third, there may be
costs or constraints of sex ratio manipulation (e.g., to fe-
cundity; Pen and Weissing 2002). If the sex ratio itself can
be moved only in the region of, say, 0.35–0.65, we expect
that boundary sex ratios would be at the allowable ex-
tremes. Finally, multiple forces (e.g., conditional, social)
may impact offspring fitness in mammals and may interact
to accentuate or cancel the benefits of sex ratio biases
(Cockburn et al. 2002). For example, in some mammals,
competition with daughters may be important in shaping
sex ratios at high population density or in young mothers
(local resource competition; Clark 1978), while maternal

condition becomes more important for sex ratios at low
density or in older mothers (e.g., van Schaik and Hrdy
1991; Kruuk et al. 1999; Isaac et al. 2005). The OLG model
we have presented in this article can provide the foun-
dation for models that examine these interacting effects
and, potentially, shed light on the diversity of natural sex
ratios observed in mammals.
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APPENDIX A

Discrete Generations

Our model follows closely the original argument introduced by Shaw and Mohler (1953). We count the contribution
of genes to grandchildren by a single mutant mother who produces sex ratios of and in a population of wild-ˆ ˆr r1 2

type mothers producing r1 and r2. Suppose N wild-type mothers (plus the mutant) each produce sons and daughters.
Subsequently, the offspring reproduce, the population of new adults produces K fertilized zygotes (grandchildren), and
K grandchildren have 2K haploid chromosome sets (HCS), K of which come from males and K of which come from
females. The mutant mother’s fitness (W) is the proportion of HCS that came from her offspring.

If N is large, the mutant mother’s contribution to grandchildren through sons and daughters is

ˆ ˆhr bS � (1 � h)r bS b1 m 2 m mK ,
N[hr bS � (1 � h)r bS b ]1 m 2 m m

ˆ ˆh(1 � r )bS � (1 � h)(1 � r )bS b1 f 2 f fK .
N[h(1 � r )bS � (1 � h)(1 � r )bS b ]1 f 2 f f

The total genetic contribution of the mutant mother to grandchildren is then

ˆ ˆ ˆ ˆhr � (1 � h)r b h(1 � r ) � (1 � h)(1 � r )b K1 2 m 1 2 fW p � . (A1)[ ]hr � (1 � h)r b h(1 � r ) � (1 � h)(1 � r )b N1 2 m 1 2 f

Without loss of generality, we also set .K/N p 1
Because a wild-type organism has , a mutant will invade the population if it has . The sex ratios r1W p 2 W 1 2

and r2 are evolutionarily stable if there are no mutant values ( , ) that make . At the evolutionarily stableˆ ˆr r W 1 21 2

strategy (ESS) conditions: (1) W is maximized with respect to and , (2) , and , and (3) . Toˆ ˆ ˆ ˆr r r p r r p r W p 21 2 1 1 2 2

find the ESS, we consider the derivatives and , when and . The derivatives areˆ ˆ ˆ ˆdW/dr dW/dr r p r r p r1 2 1 1 2 2

dW h �h
p � , (A2a)

ˆdr hr � (1 � h)r b h(1 � r ) � (1 � h)(1 � r )b1 1 2 m 1 2 f

dW (1 � h)b �(1 � h)bm fp � . (A2b)
ˆdr hr � (1 � h)r b h(1 � r ) � (1 � h)(1 � r )b2 1 2 m 1 2 f
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If we set and , we findM p hr � (1 � h)r b F p h(1 � r ) � (1 � h)(1 � r )b1 2 m 1 2 f

dW 1 1
p � , (A3a)

ˆdr M F1

dW b bm fp � . (A3b)
ˆdr M F2

With , these two derivatives cannot simultaneously equal 0. Consideration of equations (A3) reveals that thereb 1 bm f

are three possible situations (see table A1; fig. 2A).

Table A1: Maternal condition and optimal sex ratios in a population with discrete generations

Derivatives
Parameter space

regions r1 r2

I. ,
dW dW

! 0 p 0ˆ ˆdr dr1 2
! bf

h

1�h 0
(eq. [A4a])

1 1 h 1
�2 2 (1�h) bf

II. ,
dW dW

! 0 1 0ˆ ˆdr dr1 2
bf ≤ ≤ bm

h

1�h 0 1

III. ,
dW dW

p 0 1 0ˆ ˆdr dr1 2
bm !

h

1�h (eq. [A4b])
1 1 (1�h)

� bm2 2 h 1

APPENDIX B

Overlapping Generations

To examine condition-dependent sex ratios in a population with overlapping generations, we first describe the back-
ground (wild-type, aa) population using population dynamic equations. We count the number of females born under
poor condition (np(t)), females born under good condition (ng(t)), males born under poor condition ( ), and∗n (t)p

males born under good condition ( ). In stable-age distribution,∗n (t)g

n (t � 1) p n (t)p � n (t)h(1 � r )bS � n (t)h(1 � r )bJS p l n (t), (B1a)p p f p 1 f g 1 f 1 p

n (t � 1) p n (t)pg � n (t)(1 � h)(1 � r )bS b � n (t)(1 � h)(1 � r )bJS b p l n (t), (B1b)g g f f p 2 f f g 2 f f 1 g

∗ ∗ ∗n (t � 1) p n (t)p � n (t)hr bS � n (t)hr bJS p l n (t), (B1c)p p m p 1 m g 1 m 1 p

∗ ∗ ∗n (t � 1) p n (t)p g � n (t)(1 � h)r bS b � n (t)(1 � h)r bJS b p l n (t), (B1d)g g m m p 2 m m g 2 m m 1 g

where l1 is the dominant eigenvalue of the transition matrix. The population is growing when and stable whenl 1 11

. In order to find l1, we find the characteristic equation of the transition matrix. We assume a nongrowingl p 11

background population ( ), and so we must also assume that at least one variable in l1 is density dependent.l p 11

We propose that Sf is the most likely variable to carry the density dependence and solve accordingly:

1 � pfS p , (B2)f b[h(1 � r ) � (1 � h)(1 � r )b Jw]1 2 f f

where . In practice, density dependence could be anywhere in bSf.w p (1 � p )/(1 � pg )f f f f

Now we consider a mutant (Aa) that is introduced into the population. When the mutant is rare, all mutants mate
only with wild-type individuals ( ) so that half of all offspring produced by mutants are themselves mutants.Aa # aa
Mutant offspring arise through mutant females mating with wild-type males and mutant males mating with wild-type
females. The mutant produces offspring sex ratios and . As with the background population, we can write out theˆ ˆr r1 2

growth equations for the mutants (a circumflex denotes mutant parameters) as follows:
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1
ˆ ˆ ˆ ˆ ˆn (t � 1) p n (t)p � [n (t) � n (t)J] h(1 � r )bSp p f p g 1 f[ ]2

∗ ∗ˆ ˆ1 n (t) � n (t)Qp g� [n (t) � n (t)J] h(1 � r )bS , (B3a)p g 1 f ∗ ∗[ ][ ]2 n (t) � n (t)Qp g

1
ˆ ˆ ˆ ˆ ˆn (t � 1) p n (t)pg � [n (t) � n (t)J] (1 � h)(1 � r )bS bg g f f p g 2 f f[ ]2

∗ ∗ˆ ˆ1 n (t) � n (t)Qp g� [n (t) � n (t)J] (1 � h)(1 � r )bS b , (B3b)p g 2 f f ∗ ∗[ ][ ]2 n (t) � n (t)Qp g

1∗ ∗ˆ ˆ ˆ ˆ ˆn (t � 1) p n (t)p � [n (t) � n (t)J] hr bSp p m p g 1 m( )2

∗ ∗ˆ ˆ1 n (t) � n (t)Qp g� [n (t) � n (t)J] hr bS , (B3c)p g 1 m ∗ ∗( )[ ]2 n (t) � n (t)Qp g

1∗ ∗ˆ ˆ ˆ ˆ ˆn (t � 1) p n (t)p g � [n (t) � n (t)J] (1 � h)r bS bg g m m p g 2 m m[ ]2

∗ ∗ˆ ˆ1 n (t) � n (t)Qp g� [n (t) � n (t)J] (1 � h)r bS b . (B3d)p g 2 m m ∗ ∗[ ][ ]2 n (t) � n (t)Qp g

For the mutant to invade, the dominant eigenvalue of the mutant population matrix, l2, must be greater than that
of the background population (l1). Because we assume a nongrowing background population ( ), l2 must bel p 11

11. The sex ratios r1 and r2 are evolutionarily stable if there are no mutant values ( , ) that make . At theˆ ˆr r l 1 l1 2 2 1

ESS conditions, (1) l2 is maximized with respect to and , (2) and , and (3) .ˆ ˆ ˆ ˆr r r p r r p r l p 11 2 1 1 2 2 2

To find l2, we must find the characteristic equation of the mutant matrix {A2}. Equations (B3) can be written in
terms of R, the adult sex ratio weighted by the fertility advantage of good males and females:

n (t) � n (t)Jp gR p . (B4)∗ ∗n (t) � n (t)Qp g

The mutant matrix, {A2}, is then

1 1 1 1 ˆ ˆp � h(1 � r )bS h(1 � r )bJS h(1 � r )bS R h(1 � r )bS RQf 1 f 1 f 1 f 1 f2 2 2 2
1 1 1 1

ˆ ˆ ˆ ˆ(1 � h)(1 � r )bS b pg � (1 � h)(1 � r )bJS b (1 � h)(1 � r )bS b R (1 � h)(1 � r )bS b RQ2 f f f f 2 f f 2 f f 2 f f[ ]2 2 2 2
.

1 1 1 1
ˆ ˆhr bS hr bJS p � hr bS R p � hr bS RQ1 m 1 m m 1 m m 1 m2 2 2 2

1 1 1 1 ˆ ˆ(1 � h)r bS b (1 � h)r bJS b (1 � h)r bS b R p g � (1 � h)r bS b RQ2 m m 2 m m 2 m m m m 2 m m[ ]2 2 2 2 

Assuming the background population is in stable-age distribution, we use equations (B1c) and (B1d) to find

�1

hr bS (1 � h)r bS b Q1 m 2 m mR p � .[ ]1 � p 1 � p gm m m

We also substitute equation (B2) into the matrix for Sf so that the same density dependence applies to the mutant.
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From the characteristic equation of {A2}, we find l2. To find the ESS, we consider the derivatives andˆdl /dr2 1

, when and , and set these equal to 0. We performed the following calculations (see app. C inˆ ˆ ˆdl /dr r p r r p r2 2 1 1 2 2

the online edition of the American Naturalist): (1) Use the background transition matrix to solve for Sf. (2) Calculate
the characteristic equation of {A2}. (3) Take the derivative of l2, with respect to and . (4) Apply ESS conditions:ˆ ˆr r1 2

, , and . (5) Solve for r1 and r2 when and , respectively. (6) Confirmˆ ˆ ˆ ˆr p r r p r l p l p 1 dl /dr p 0 dl /dr p 01 1 2 2 2 1 2 1 2 2

that both derivatives cannot be optimized simultaneously (cannot equal 0 simultaneously). (7) Solve for r1 with
. Solve for r2 with . These are the final solutions. (8) Confirm the assumptions in step 7 that if r1 has anr p 1 r p 02 1

internal optimum, then and if r2 has an internal optimum, then (for ).r p 1 r p 0 b Qw 1 b Jw2 1 m m f f

Additional Model Modifications

Age of First Reproduction of 2 Years. To modify the model for age of first reproduction of 2 years rather than 1 year,
we track (1) first-year females (daughters produced by females ≥2 years survival from the previousold # juvenile
year) and (2) ≥2-year-old females (survival of first-year and ≥2-year-old females from the previous year). Survival
after the first year is equal to adult survival. We treat males in a comparable fashion. We assumed that adult survival
does not differ between offspring born in different conditions, and the only advantage to offspring born in good
condition is a first-year survival advantage to sons. The process of finding the ESS sex ratios follows the same steps
as before.

Females Reproducing in Good Condition Have a Fecundity Advantage. To give a fecundity advantage to females repro-
ducing in good condition, we assign a fecundity of bJ to the proportion of females in good condition, where1 � h

. The fecundity advantage is due only to the condition in which the female is reproducing that year and is notJ 1 1
influenced by the condition in which she was born. Advantages to offspring from being born to a mother in good
condition are seen only in juvenile survival, with . We use one equation each to count females and malesb 1 b 1 1m f

in the population. The process of finding the ESS sex ratios follows similar steps as before.
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